多重积分

极坐标转换直角坐标系

计算I=r2sinθ1r2cos2θdrdθ,其中D={(r,θ)0rsecθ,0θπ4}.计算 I = \iint r^2 \sin\theta \sqrt{1-r^2\cos2\theta} \mathrm{d}r\mathrm{d}\theta,其中 D = \{(r, \theta) | 0 \leqslant r \leqslant \sec\theta, \, 0 \leqslant \theta \leqslant \frac{\pi}{4} \}.

解:I=Dr2sinθ1r2(cos2θsin2θ)drdθ,=01dx0xy1x2+y2dy,=13π16.\begin{aligned} \text{解:}I &= \iint\limits_{D} r^2 \sin\theta \sqrt{1-r^2(\cos^2\theta-\sin^2\theta)} \mathrm{d}r\mathrm{d}\theta, \\ &= \int_{0}^{1}\mathrm{d}x \int_{0}^{x} y \sqrt{1-x^2+y^2} \mathrm{d}y, \\ &= \frac{1}{3} - \frac{\pi}{16}. \end{aligned}

含参未定积分

f(x)满足f(x)=x2+x0x2f(x2t)dt+Df(xy)dxdy,其中D是以(1,1),(1,1),(1,1)为顶点的三角形,且f(1)=0,求01f(x)dx设 f(x) 满足 f(x) = x^2 + x \int_{0}^{x^2} f(x^2-t)\mathrm{d}t + \iint\limits_{D} f(xy)\mathrm{d}x \mathrm{d}y,其中 D 是以 (-1, -1), \, (1, -1), \, (1, 1) 为顶点的三角形,且 f(1) = 0,求 \int_{0}^{1}f(x)\mathrm{d}x

解:设A=Df(xy)dxdy,f(xy)=x2y2+xy0x2y2f(u)du+A,两边同时在D上积分得解:设 A = \iint\limits_{D} f(xy)\mathrm{d}x \mathrm{d}y, \, 则 f(xy) = x^2y^2 + xy \int_{0}^{x^2y^2}f(u)\mathrm{d}u + A,两边同时在 D 上积分得

A=Dx2y2dxdy+0+2A,A=29.\begin{aligned} A &= \iint\limits_{D}x^2y^2\mathrm{d}x\mathrm{d}y + 0 + 2A, \\ A &= -\frac{2}{9}. \end{aligned}

f(x)=x2+x0x2f(u)du29,令x=1即 f(x) = x^2 + x\int_{0}^{x^2}f(u)\mathrm{d}u - \frac{2}{9},令 x = 1 得

01f(x)dx=79\int_{0}^{1} f(x) \mathrm{d}x = -\frac{7}{9}


多重积分
https://hxzsty233.com/2024/09/11/多重积分/
作者
海星
发布于
2024年9月11日
许可协议