极坐标转换直角坐标系
计算I=∬r2sinθ1−r2cos2θdrdθ,其中D={(r,θ)∣0⩽r⩽secθ,0⩽θ⩽4π}.
解:I=D∬r2sinθ1−r2(cos2θ−sin2θ)drdθ,=∫01dx∫0xy1−x2+y2dy,=31−16π.
含参未定积分
设f(x)满足f(x)=x2+x∫0x2f(x2−t)dt+D∬f(xy)dxdy,其中D是以(−1,−1),(1,−1),(1,1)为顶点的三角形,且f(1)=0,求∫01f(x)dx
解:设A=D∬f(xy)dxdy,则f(xy)=x2y2+xy∫0x2y2f(u)du+A,两边同时在D上积分得
AA=D∬x2y2dxdy+0+2A,=−92.
即f(x)=x2+x∫0x2f(u)du−92,令x=1得
∫01f(x)dx=−97