Wallis乘积

1.Wallis 公式

求证:

0π2sinnxdx=0π2cosnxdx={(n1)!!n!!,n为奇数,π2(n1)!!n!!,n为偶数,\int_{0}^{\frac{\pi}{2}}\sin^{n}x\mathrm{d}x = \int_{0}^{\frac{\pi}{2}}\cos^{n}x\mathrm{d}x = \begin{cases} \frac{(n-1)!!}{n!!}, \quad \, \, \, n \, \text{为奇数}, \\ \frac{\pi}{2} \cdot \frac{(n-1)!!}{n!!}, \, n \, \text{为偶数}, \end{cases}

证明:

0π2sinnxdx=pi2π(cosx)ndx=0π2cosnxdx可知只需证sinx一种即可\text{由} \int_{0}^{\frac{\pi}{2}}\sin^n{x}\mathrm{d}x = \int_{\frac{pi}{2}}^{\pi}(-\cos x)^n \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \cos^n x \mathrm{d}x \, \text{可知只需证} \sin x \text{一种即可}

0π2sinnxdx=In\int_{0}^{\frac{\pi}{2}}\sin^n{x}\mathrm{d}x = I_{n}

则有

In=0π2sinn1xsinxdx=0π2sinn1xd(cosx)=cosxsinn1x0π2+0π2sinn2xcos2xdx=(n1)[In2In]\begin{aligned} I_{n} &= \int_{0}^{\frac{\pi}{2}}\sin^{n-1}{x} \sin x\mathrm{d}x = -\int_{0}^{\frac{\pi}{2}}\sin^{n-1}{x}\mathrm{d}(\cos x) \\ &= - \cos x \sin^{n-1}x |_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \sin^{n-2}x \cdot\cos^2x \mathrm{d}x \\ &= (n-1)\left[I_{n-2} - I_{n}\right] \end{aligned}

即得到了递推式:

In=n1nIn2I_{n} = \frac{n-1}{n}I_{n-2}

结合 n=0 以及 n=1 时的情况可知

{I2n=π2m=1n2m12m,I2n+1=m=1n2m2m+1,\begin{cases} I_{2n} = \frac{\pi}{2} \cdot \prod_{m=1}^{n} \frac{2m-1}{2m}, \\ I_{2n+1} = \prod_{m=1}^{n} \frac{2m}{2m+1}, \end{cases}

2.Wallis乘积

由上式可以知道

π2=0π2sin2nxdx0π2sin2n+1xdxm=1n2m2m12m2m+1\frac{\pi}{2} = \frac{\int_{0}^{\frac{\pi}{2}}\sin^{2n}x\mathrm{d}x}{\int_{0}^{\frac{\pi}{2}}\sin^{2n+1}x\mathrm{d}x} \cdot \prod_{m=1}^{n}\frac{2m}{2m-1} \cdot \frac{2m}{2m+1}

下面来求极限

0π2sin2nxdx0π2sin2n+1xdx\frac{\int_{0}^{\frac{\pi}{2}}\sin^{2n}x\mathrm{d}x}{\int_{0}^{\frac{\pi}{2}}\sin^{2n+1}x\mathrm{d}x}

1=0π2sin2n+1xdx0π2sin2n+1xdx<0π2sin2nxdx0π2sin2n+1xdx<0π2sin2n1xdx0π2sin2n+1xdx=2n+12n1 = \frac{\int_{0}^{\frac{\pi}{2}}\sin^{2n+1}x\mathrm{d}x}{\int_{0}^{\frac{\pi}{2}}\sin^{2n+1}x\mathrm{d}x} < \frac{\int_{0}^{\frac{\pi}{2}}\sin^{2n}x\mathrm{d}x}{\int_{0}^{\frac{\pi}{2}}\sin^{2n+1}x\mathrm{d}x} < \frac{\int_{0}^{\frac{\pi}{2}}\sin^{2n-1}x\mathrm{d}x}{\int_{0}^{\frac{\pi}{2}}\sin^{2n+1}x\mathrm{d}x} = \frac{2n+1}{2n}

根据夹逼法则可以得到上式极限为一,那么

π2=limnm=1n2m2m12m2m+1=limn[(2n)!!(2n1)!!]212n+1\frac{\pi}{2} = \lim_{n \to \infty}\prod_{m=1}^{n}\frac{2m}{2m-1} \cdot \frac{2m}{2m+1} = \lim_{n \to \infty} \left[\frac{(2n)!!}{(2n-1)!!}\right]^2 \cdot \frac{1}{2n+1}

3.例题

题目:

an=0π2cosn+1xdx,求limnnan2\text{设} \, a_{n} = \int_{0}^{\frac{\pi}{2}}\cos^{n+1}x \mathrm{d}x, \text{求} \lim_{n \to \infty} n a_{n}^2

i. n 为奇数

an=0π2cosn+1xdx=(2m1)!!(2m)!!π2limnnan2=π4a_{n} = \int_{0}^{\frac{\pi}{2}}\cos^{n+1}x \mathrm{d}x = \frac{(2m-1)!!}{(2m)!!} \cdot \frac{\pi}{2} \\ \lim_{n \to \infty} n a_{n}^2 = \frac{\pi}{4}

ii.n为偶数ii. n 为偶数

limnnan2=1π\lim_{n \to \infty} n a_{n}^2 = \frac{1}{\pi}


Wallis乘积
https://hxzsty233.com/2024/07/11/Wallis乘积/
作者
海星
发布于
2024年7月11日
许可协议